IRflex wins SBIR Phase I Project to develop anti-reflective surface for infrared optical fibers endfaces

On October 8, 2019, IRflex Corporation signed a contract with the Department of Defense after winning the Phase I project N192-067 proposal to develop an anti-reflective surface for use on bare and connectorized infrared fiber optical cable assembly endfaces.

The project requests that the anti-reflective surface should be realizable on non-silica optical fiber including indium fluoride, chalcogenide, tellurite, and ZBLAN. Fiber optic cables should be designed to assemble with SubMiniature Version A (SMA) 905 connectors and be compatible with short and mid-wave laser sources for the wavelength interest region of 1.5 to 5 micron. The fiber optic cable assembly must pass thermal, vibration, and humidity environmental testing. The end result of this project is an anti-reflective surface with an improved damage threshold for high power application that can be manufactured.

IRflex Corporation manufactures the mid-infrared fibers based on extra high purity chalcogenide glass, whose proprietary fiber technology and knowhow support the project to design, model, and demonstrate a proof of concept of anti-reflective surface for our mid-infrared optical fibers and cables.